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ABSTRACT 

One-dimensional fluid systems can be analyzed for 
natural frequencies and modes using an available 
structural finite element program, wi th the aid of 
the mobility analogy. In this paper, the 
methodology, strength and limitation of the 
solution technique are discussed . Th i s method is 
validated by considering several example cases and 
comparing results with theory, experiment or other 
numerical techniques. 

INTRODUCTION 

The physical variables of a dynamic system could 
be classified either according to the dynamic and 
kinematic variables (impedance approach) , or 
according to the across and through variables 
(mobility approach) [1-3] . However, in order to 
develop an analogy between the mechanical and 
fluid systems, the mobility approach i s often more 
attractive because these physical systems are 
generally excited by a through (flow/current) 
variable T(t), and the response is often expressed 
in terms of the across (effort/potential) 
variable A(t); see Table 1 for the classification 
of mechanical and fluid variables per mobility 
analogy. 

The impedance/mobility analogy is used extensively 
to solve dynamic problems for the fluid systems 
[1-6]. This is because the analogous mechanical 
or electrical systems are eas ier to analyze; also, 
there is an abundance of solution techniques and 
literature available for these physical systems . 
Conversely, the literature dealing with the fluid 
transients, especially the eigenvalue solution of 
fluid systems, is very limited [4,7]. Cory and 
Hatfield [6] have demonstrated that the force-flow 
analogy can be used to determine natural frequen­
cies fn and modes o/n of fluid oscillations . They 
used a structural finite element program, SUPERB 
[8], for a refinery piping example case, and 
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obtained good agreement between SUPERB and WAVENET 
(a fluid transients computer program based on the 
method of characteristics [9] ) . However, in order 
to establish the mobility analogy solution tech­
nique, a suffi cient number of example cases must 
be analyzed, and an adequate error analysis should 
be performed. Thi s i s the focu s of this paper as 
we will consider several one-dimensional fluid 
systems and compare the computed results, using 
the mobility analogy-finite element analysis, with 
the solutions obtained by theory, experiment, or 
other numerical techniques. 

SCOPE 

We are interested in obtaining an eigenvalue 
solution (i . e . fn and o/ n) of a fluid system over 
the plane wave regime. Accordingly we assume the 
following: (i) the fluid system is linear, 
homogeneous, undamped, and perfectly elastic, 
(ii) the fluid i s at rest, (iii) the fluid is 
bounded by rigid walls and therefore solid-fluid 
interactions are not included, and (iv) one­
dimensional plane wave propagation exists over the 
frequency range of interest. 

METHODOLOGY 

l. Convert a fluid system into a one-dimensional 
mechanical system using the mobility analogy: 

a. geometry: 1 = 1 f , where 1 e .m e 
[7,10]; sm =sf 

b. properties: pm = pf ; Em= Ef (bulk 
modulus) ; poisson's ratio =< 0 

c . boundary condition s : (i) open fluid end 
{p .= O) ... fixed mechanical termination 
(s = 0), (ii) closed ·fluid end (q = 0) 
... free mechanical termination (F = 0), 
or a very compliant spring, and 



(iii) fluid branch (q = ql + qz) + 

mechanical branch (F = F1 + F2J· 

2. Develop a finite element model of the analo­
gous mechanical system such that only 
translation in the longitudinal direction ( ~ x) 
is allowed. For modeling a fluid branch, the 
element-overlapping method should be used to 
ensure this. 

3. Choose parameters related to the eigenvalue 
solution. The number (NM) and locations of 
master nodes [11] must be chosen judiciously 
in the x direction only, i.e . ~Y = ~z = Gx = 
Gy = Gz = 0. 

4. Run the finite element model for eigenvalue 
solution. 

5. Finally, the results of the analogous 
mechanical system can be interpreted for the 
fluid system as follows: (f ) = (fn)f, and 
('l'n)~ = ('l'n)p. n m 

RESULTS 

We will now apply our method to some basic fluid 
components which are often encountered in the 
machines and piping networks. For the finite 
element analysis, we have used SUPERB with linear 
beam type element [8]. 

Example Case I: Closed-Open Tube 

Table 2 and Figure 1 show comparison between the 
mobility analogy-finite element analysis and the 
closed-form solutions for fn and '~'n · We note 
excellent correl ation between theory and finite 
element analysis, especially for the lower modes. 
The end corrections or additional kinetic energy 
effects must be applied at the open end [10]. 
Since the finite element analysis ignored the end 
corrections, its predictions are closer to the 
theoretical solution based on the geometric length 
(i.e. le = lg). 

Similar comparisons between theory and finite 
element analysis have been found for the closed­
closed and open-open tubes [12]. 

Example Case II: Helmholtz Resonator 

We have examined a Helmholtz resonator whose geom­
etry is described in Reference [13]. Table 3 and 
Figure 2 show our results for the first mode; 
these are compared with theory [7,10] and other 
three-dimensional finite element analyses [13,14]. 
We observe that our method predicts f1 well only 
when we employ only one master mode and apply an 
end correction; this model, however, does not 
predict the same mode shape as given by other 
three-dimensional finite element analyses. 
Conversely, we predict mode shape well by employ­
ing a large number of master modes (say~= 11). 

Example Case III: Composite System 

Figure 3 shows a composite system consisting of 
three volumes and two orifices [15]. For this 
example case, we observe a substantial variation 
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in f1 and f2 values with different finite element 
models. In Table 4 and Figure 4 the results of two 
typ.ical models are given; these are also compared 
with an experiment and a two degrees of freedom 
lumped parameter analysis. We note that the 
finite element model requires a careful selection 
of the master nodes. Similar results have been 
found for other combinat ions of volumes and 
orifices [12]. 

CONCLUDING REMARKS 

The space limitation here prevents us from a 
detailed discussion of the example cases presented 
above. Based on these and other example cases we 
have studied, we can conclude that the mobility 
analogy-finite element method predicts natural 
frequencies and modes of one-dimensional fluid 
systems reasonably well. However, we have to pay 
adequate attention to the following modeling 
aspects: (i) the number of elastic and inertia 
elements, (ii) the number and locations of master 
nodes, and (iii) the employment of end corrections. 
For some physical systems, a selection of large 
number of master nodes may not yield the "more 
correct" fn value as demonstrated here. This 
aspect of the finite element analysis is generally 
not discussed well in the literature [6,8,11 ,13]; 
and therefore, it should be investigated further 
with reference to the fluid systems. Also, more 
fluid components and systems should be studied in 
order to establish some modeling guidelines. 

The mobility analogy-finite element analysis 
method is an attractive solution technique for 
practical one-dimensional fluid systems as any 
available structural finite element code could be 
used readily. However, we should point out that 
sometimes it is difficult to construct an analogy 
between a mechanical and a fluid system. There­
fore, some user judgement and discretion is 
advised. 

LIST OF SYMBOLS 

A across variable 
c speed of wave propagation 
E modulus of elasticity 
f frequency 
F force 
1 length 
n number of modes 
N number of nodes 
p pressure 
q volume flow rate 
r radius (hydraulic) 
S cross-sectional area 
T through variable 
t time 
x longitudinal coordinate 
p density 
'¥ mode {pressure) 
e angular displacement 
~ displacement (longitudinal) 
~ end correction (length) 

Subscripts 

e effective 
f fluid 



g geometric 
i inside 
m mechanical 
M master 
n moda 1 index 
0 outside 
T total/elastic 
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Table 1. Mobility Analogy Between Mechanical and Fluid 
Systems 

Mechanical 
System Fluid System 

q 
q) T(t) F (or Jqdt, 

t 
, ~) A(t) (or E; p 

Wave equation ;/ t = c2 q n= c2n 
A(x,t) ~ m ax at 2 f a/ 

c em = IEm/Pm c = f I Ef/pf 

Table 2. Natural Frequenc ies of Example Case I : Closed-Open Tube. Medium: Fresh 
Water at 20 oc 

Natural Frequency (Hz) 

Method fl f2 f3 f4 f5 f6 

Theory [10] 
( i ) without end correction (le=lg) 37.2 111.6 186.1 260.5 334.9 401 .4 

( i i ) with end correction (le=lg+6) 35.7 107 .0 178.4 249.8 321.1 392 .5 

Finite-element analysis using 
mobility analogy 36 . 5 109.7 183.7 258 .8 335.6 414 . 5 

• NT=22, NM=l9 

. without end correction (le=lg) 

+I 

0 

-I 

Figure 1. Pressure Modes of Example Case I: Closed-Open Tube. Note That the 
End Corrections are Not Applied Here for Both Analyses , i .e . 1 =1 . e g 
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Table 3. First Natural Frequency of Example Case II: Helmholtz Resonator. 
Medium: Air at Room Temperature. 

Natural End Corrections 

Method 
Frequency f 1 /).. /). 

(Hz) 1 0 

Theory - single degree of freedom 
analysis [7,10] 

( i ) without any end correction (le=lg) 45.3 0 0 

( i i ) with one end correction 44.0 0.85r 0 
(iii ) with both end corrections 43.0 0.85r 0.64r 

One-dimensional finite element analysis 
using mobility analogy 

(i) NT=9, NM=l 43.5 0.85r 0 

( i i ) NT=l3, NM=ll 33 . 5 0.85r 0.64r 

Three-dimensional finite element analysis 
using an acoustic element [13] 

• NM "' 600 43.3 0 0 

Three-dimensional finite element analysis 
using transient heat conduction analogy 
[14] 

• NT=92, NM=9 43.3 0 0 

Table 4. Natural Frequencies of Example Case III: Composite System . Medium : 
Air at Room Temperature 

Natural Frequency 
f n End 

fl f2 
Corrections 

Method Included 

Ex peri menta 1 [15] 206.2 385.6 -

Finite element analysis 
using mobility analogy 

( i ) NT=8, NM=4 179.4 375.0 Yes 

( i i ) NT=26, NM=24 190.5 393.8 No 

Lumped parameter analysis 
- two degrees of freedom [15] 218.8 396.5 . Yes 
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.~Effective Lengths 

Piston End f--l..j P--J Closed End 

: :: I 
a::~ ~0289L~ ~:~.,, 

1------------L------------..; 

Figure 3. Schematic of the Example Case III: Composite System. 

\ 

\ 

------- Exper imental [1 5] 

0 

Lumped Parameter 
Analysis - Two 
Degrees of Freedom [15] 

Finite Element 
Ana-lysis Us i ng 
Mobility Analogy + 1.0 

0 

L 

+ 1.0 

0 

-1.0 

Fi gure 4. Pressure Modes of Example Case III: Composite System (Fig. 3). See 
Table 4 for Na t ufal Frequencie s . 
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